S4PR0

SMART AND SCALABLE SATELLITE HIGH SPEED PROCESSING CHRIN

Advanced Navigation and Communication solutions for Space Segment

Presenter: Riccardo Longo - QAS Contributors: Riccardo Longo, Marco Bergamin - QAS

This document has been produced under Grant Agreement 822014.

POSITIONING IN SPACE

How to get accurate Position and velocity for small satellites?

- Based on Software Defined Radio (SDR) Technology
- Configurability for multiple missions
- Snapshot processing capability
- Low-cost solution

Hardware and software development for space equipment has special requirements:

High reliability	Must address possible failures to anticipate automatic recover/restart strategies from a well known state	
Design and Development strategies:	 TDD (Test Driven Development) HiL (Hardware-in-the-loop) CI (Continuous Integration) 	+ HABILITY .
Communication protocol	Communication with ground segment suitably designed for low data rate link in downlink and uplink (link is not always available).	· · · ·
Power budget	Must be managed efficiently to reduce power consumption	
SDR (Software-defined radio) devices	The software can be upgraded and updated remotely to add new features, improving performance and security.	

POSITIONING ALGORITHMS

The SDR-based GNSS receiver developed in the scope of S4Pro project demonstrates:

- Benefits of multi-constellation positioning (GPS + Galileo)
- Snapshot Processing method
 - Innovative concept for Space
 - All computations for snapshot positioning are done directly on-board (SDR Module)
 - Low Power Consumption w.r.t conventional positioning

Task	Conventional Positioning		Snapshot Positioning
Time to get position velocity and time (PVT)	Tens of seconds of signal tracking for receiver position	\Rightarrow	Receiver position determination using brief interval of received satellite signal
Power Consumption	May be always turned-on		Triggered for brief intervals when needed
Computational Burden	Computation forcibly on-board	\Rightarrow	Computation task easily performed directly in-space, or on ground server
Tracking of GNSS signal	Difficult to maintain signal tracking		No need of tracking

SNAPSHOT APPROACHES

ON-GROUND Snapshot Processing

PVT computation performed on ground station
SDR capturing signal snapshot of GNSS SIS
Send samples to ground segment
High processing power on ground

IN-SPACE Snapshot Processing PVT computation performed on-board
SDR capturing signal snapshot of GNSS SIS
Perform all signal processing and acquisition

COMMUNICATION MODULE

Telemetry Application

- Merging incoming EO data with Navigation Results for GEO/Time tagging
- Apply data coding and modulation to get Telemetry (TM) RAW signal samples
- Telemetry signal format:
 - Interleaved IQ
 - 16-bit
- Store telemetry RAW data on local storage

Welch plot for Telemetry sample signal

GROUND SNAPSHOT RESULTS

Ground Snapshot Processing results

- Simulated LEO Trajectory (Using Spirent GSS6700 RFCS)
- Dedicated workstation with i7 CPU 16Gb RAM
- Dual GNSS (GPS + Galileo)
- Average time for snapshot PVT computation: 2.125s
- Accuracy 3D RMS: ~40 m

SPACE SNAPSHOT RESULTS

Space Snapshot Processing results

- Simulated LEO Trajectory (Using Spirent GSS6700 RFCS)
- Dual ARM® Cortex[™]-A9 processor and FPGA
- Average time for snapshot PVT computation: 16.3s
- Accuracy 3D RMS: ~12 m
- Trade-off and optimizations can lead up to 10x time reduction

SPACE SNAPSHOT RESULTS

Number of satellites during the testing scenario

• C/N0 and doppler profile plots for each acquired GPS and Galileo signal

SPACE SNAPSHOT RESULTS

Ground track of reference LEO trajectory (snapshots)

• GPS and Galileo ground projections and their computed correlators

PROGRESS SUMMARY AND FUTURE MISSIONS

Low Data Rate Navigation & Communication module

- **SDR** technology to be used in space applications
- GNSS **snapshot positioning** investigation and performance evaluation
- PVT accuracy lower than 15 m
- Further optimizations in Doppler space analysis and acquisition strategies to improve performances
- Predisposition for:
 - Realtime signal tracking
 - Authentication
 - Interference mitigation

Detail on carrier board hosting the COTS SDR Module

Qascom Module for Navigation and Communication in its enclosure

ANY QUESTIONS?

a PNO international management services company

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 822014. This text reflects only the author's views and the Commission is not liable for any use that may be made of the information contained therein.

